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Plumage coloration deriving from carotenoid and melanin pigments can be a
quality signal in birds, and can be under conspecific inspection in social interactions.
For example, parasite load and immune system status can be inferred through
plumage color intensity, and can influence the choice of sexual partners. Here, we
evaluated two plumage ornaments in the Yellow-billed Cardinal [Paroaria capitata
(d’Orbigny & Lafresnaye 1837)]: the carotenoid-based coloration of the cap and the
melanin-based coloration of the bib. We evaluated whether these ornaments were
related to blood parasite burden, immunological status and body condition, and
whether they could reveal individual sex and age. Cardinals were mist-netted in a
Brazilian wetland, and 12 individuals were infected with malaria parasites. Both
carotenoid and melanin colorations were related to age, but only carotenoids
reflected immunological status. Adult cardinals presented redder caps and darker
bibs in comparison to juveniles, and redder caps were associated with low values of
heterophil to lymphocyte ratio (H/L, indicating lower stress level). Plumage coloration
did not indicate individual sex or parasite infection. Taken together, these results
demonstrated that both melanin- and carotenoid-based coloration in cardinals can
potentially reflect significant information for social interactions, such as individual
age and experience, but apparently only carotenoid coloration is condition-dependent
and could reliably indicate quality.

KEY WORDS: neotropics, ornaments, Pantanal, sexual signaling, WBC, avian malaria,
Plasmodium, Haemoproteus.
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INTRODUCTION

Elaborate and colorful feathers in birds are usually the result of increased intra-
sexual competition and careful mate choice (Andersson 1994). It is often assumed that
sexual traits, such as plumage ornaments, reflect individual health status that could be
under conspecific inspection in social interactions (Zahavi 1975; Andersson 1994). For
example, rivals can predict their opponent’s health condition, dominance status and
fighting ability by the plumage coloration conspicuity (e.g. Greene et al. 2000; Pryke
et al. 2001), or females may prefer brightly colored males for copulations (Hill 1990;
Sætre et al. 1994). Besides the biased interest in male ornaments, a significant amount of
evidence has revealed that males can also be selective based on females’ ornaments
(Clutton-Brock 2009), especially regarding coloration patterns (Griggio et al. 2005, 2009).

Colorations deriving from carotenoid and melanin pigments are considered
important plumage quality signals. Carotenoids are responsible for most of the yellow,
orange and red colorations (Brush 1990), and melanin produces the black and brown
color of feathers (McGraw 2006). Because the former cannot be synthesized metaboli-
cally and are obtained exclusively through the diet, condition-dependency of carote-
noid-based ornaments is predictable since they may co-vary with individual access to
pigment resources (Hill 1992). In addition, carotenoids may have multiple physiological
functions, such as antioxidants and immune-stimulators (Lozano 1994; Møller et al.
2000), affecting individual health status.

Melanin pigment can in turn be synthesized metabolically; thus, the potential for
honesty as a quality signal is less evident (Badyaev & Hill 2000; Senar et al. 2003;
McGraw 2006; but see 2003 for the role of metals in physiological processes and
melanin synthesis). However, recent evidence reinforces the idea that melanin-based
ornamentation may be associated with condition, predicting both reproductive output
and levels of oxidative stress (Grunst et al. 2014; Wiebe & Vitousek 2015). Moreover,
different studies have demonstrated that testosterone levels were also associated with
melanin ornaments, suggesting that more extensively ornamented individuals were
more affected by immunosuppressive effects (reviewed in McGraw 2008). Examples
of the importance of melanin-based ornaments in social or sexual contexts have been
accumulating (Rohwer 1975; Griffith 2000; McGraw 2006; Guindre-Parker & Love
2014).

Plumage coloration based on melanin and carotenoids may reflect individual
parasite load and immune system status (Hõrak et al. 2001; Doucet & Montgomerie
2003; del Cerro et al. 2010; Guindre-Parker et al. 2013). The additional function of
carotenoids as immune-stimulators (e.g. in the production of lymphocytes, neutrophils
and macrophages) suggests that a mutual investment in coloration and immune
response can serve as a trade-off (Møller et al. 2000). If more investment is necessary
for physiological functions that prevent or aid in recovery from infections, fewer
resources are available to allocate in feather coloration. As a consequence, mate choice
favoring birds with colorful feathers may guarantee bonding with sexual partners in
good health condition (e.g. Lozano 1994; Garamszegi 2005; Aguilar et al. 2007) and
transfer of “good genes” to the offspring (Hamilton & Zuk 1982). Similarly, melanin
synthesis can be condition-dependent (see Guindre-Parker & Love 2014 and references
therein), and its use in ornaments may also function as a trade-off against other
physiological activities, even though the cost of melanin production is still unclear.

Here, we studied plumage coloration, body condition and immunological status
in the Yellow-billed Cardinal [Paroaria capitata (d’Orbigny & Lafresnaye 1837)].
Biochemical analysis performed on the genus demonstrated a higher proportion of
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α-doradexanthin and canthaxanthin in the feathers (Thomas et al. 2014). Yellow-billed
Cardinals are distributed throughout southwestern Brazil, Paraguay and northern
Argentina (Ridgely & Tudor 1989). Males and females are alike, presenting a bright
red cap, a black pointed bib, darker wings and white underparts (Ridgely & Tudor
1989). The bill has a characteristic pinkish-yellow coloration (Sick 1997), which is
responsible for the common name. Juvenile individuals are not as brightly colored as
adults, and have generally slightly paler red bibs. Despite being commonly found
throughout its distribution, information regarding social and sexual behavior of this
species is rare. Yellow-billed Cardinals are single-brooded and socially monogamous,
and breed from September to March in Argentina (Di Giacomo 2005). Within this
context, our goal was to determine whether the expression of two plumage ornaments
in the Yellow-billed Cardinals, the carotenoid-based coloration of the red cap and the
melanin-based coloration of the bib, reflect individual quality. We hypothesized that
ornaments would be negatively correlated to blood parasite burden, and positively
correlated to immunological and body condition, measured as feather growth rate
and mass-to-size ratio. We also investigated whether plumage coloration in Yellow-
billed Cardinals can indicate individual sex and age.

METHODS

Study area

This work was conducted in the dry season of 2009 at a study station of the Universidade
Federal de Mato Grosso do Sul (19°34’37”S, 57°00’42”W), in southwestern Brazil. The study site is
within Pantanal, a low-altitude Brazilian wetland with well-defined dry and rainy seasons (Pott &
Pott 1994). Extensive areas of Pantanal become flooded during January to June, and yearly mean
temperatures vary from 20 to 27 °C (Pott & Pott 1994). The area is composed by typical Brazilian
wetland vegetation, including gallery forests, aquatic and open habitats, and human-modified
areas.

General procedures

Yellow-billed Cardinals were mist-netted (license issued by Instituto Brasileiro do Meio
Ambiente e dos Recursos Naturais Renováveis – IBAMA, and Instituto Chico Mendes de
Conservação da Biodiversidade – ICMBio, no. 12322–3). All individuals were identified with a
numbered metal band supplied by the Brazilian birding agency (CEMAVE/ICMBio). At the time of
capture, individuals were weighed (to the nearest gram) with a Pesola® spring scale and the tarsus
was measured with a caliper (to the nearest 0.02 mm). We recorded the age (adult or juvenile) by
assessing the presence of a colored gape flange, and whether the individual was molting or not.
From each captured individual, we collected the following: the right outermost rectrix for ptilo-
chronology analysis, a blood sample for immunological and parasitological analysis and a sample
of body feathers for the plumage coloration analysis (see details below). Birds were molecularly
sexed following the protocol of Griffiths et al. (1998).

Ptilochronology and body condition index

To estimate body condition during molt, we calculated the feather growth rate using a
ptilochronology technique (Grubb 2006). Under direct illumination, we measured with a caliper
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(to the nearest 0.02 mm) the total width of 10 growth bars centered on a point two thirds of the way
from the feather’s distal end. The total width was divided by 10 to calculate the average growth bar
width (Grubb 2006). This measurement can honestly signal health quality (Carlson 1998; Takaki
et al. 2001), considering that nutritional condition during molt may constrain ornament produc-
tion (Hill & Montgomerie 1994; Hegyi et al. 2007). For example, a faster growth rate of flight
feathers may be important for survival because they determine maneuvering capacity; however, a
trade-off may exist against other energetic costs depending on bird nutritional condition during
molt (Grubb 2006). Another condition measurement, the body condition index, was calculated as
the residuals of a linear regression of body mass (power-transformed) on tarsus length (fourth
power-transformed; Brown 1996).

Ornament coloration analysis

We measured the spectral reflectance of red cap (Fig. 1) and black bib (Fig. 2) feathers from
all individuals using a USB4000 spectrometer with a PX-2 pulsed xenon light source (range
250–750 nm) (Ocean Optics, Dunedin, FL). We removed 5–6 feathers with forceps and arranged
them in an overlapping disposition to simulate the bird body. We took three readings for each
sample using a bifurcated fiber-optic probe (Ocean Optics, Dunedin, FL), mounted on a holder at
90° that excluded all ambient light, at 2 mm from the feather. All measurements were taken relative
to a WS-1-SS diffuse reflectance white standard (Ocean Optics). Reflectance data were used to
calculate brightness and hue for the two body parts, and red and ultraviolet (UV) chroma for both
cap and bib, respectively (Montgomerie 2006). Brightness (R320-700), or total light reflected, was
calculated as the sum of the percentage reflectance values from 320 to 700 nm. Hue (λRmax),
which is the main color reflected by the feather, was calculated as the wavelength of maximum
reflectance. Chroma, a measure of spectral purity, was calculated as the ratio between total
reflectance in the range of interest and total reflectance across the entire spectrum. Thus, red
chroma was calculated as the ratio between red reflectance (R625–700) and total reflectance
(R320–700), and UV chroma as the ratio between UV reflectance (R320–400) and total reflectance
(R320–700). Repeatability among measurements (intra-class correlation) from the same body
region was high (all r > 0.75; all P < 0.001; Lessells & Boag 1987).

To avoid redundant variables in statistical analysis, we ran a principal component analysis
(PCA) for the cap and the bib spectral measurements separately. We used the first two principal
components (PC), because they explained more than 80% of the variation in both PCAs. The first

Fig. 1. — Spectral reflectance curves for the red cap of males (black solid line), females (gray solid line),
adults (black dashed line) and juveniles (gray dashed line) of Yellow-billed Cardinals (Paroaria capitata).
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component for the red cap (PCcap1) loaded negatively with brightness. The second component for
the red cap (PCcap2) loaded positively with hue and red chroma. For the black bib, the first
component (PCbib1) loaded negatively with brightness and positively with hue and UV chroma.
The second component for the black bib (PCbib2) was strongly loaded with brightness and UV
chroma (Table 1).

Immunological and parasitological analysis

Blood samples were collected by puncturing the brachial vein with a sterile needle to prepare
blood smears for microscopic observation and molecular analysis. Smears were air-dried, fixed in

Fig. 2. — Spectral reflectance curves for the black bib of males (black solid line), females (gray solid line),
adults (black dashed line) and juveniles (gray dashed line) of Yellow-billed Cardinals (Paroaria capitata).

Table 1.

Loadings of the principal component (PC) analysis on colorimetric variables from the cap carotenoid-
based coloration and bib melanin-based coloration of Yellow-billed Cardinals (Paroaria capitata).

Ornament PC1 PC2

Carotenoid-based coloration

Brightness − 0.759 0.050

Hue − 0.391 0.759

Red chroma 0.519 0.648

Proportion of variance explained (%) 43.7 37.2

Melanin-based coloration

Brightness − 0.492 0.799

Hue 0.656 0.080

Ultraviolet (UV) chroma 0.571 0.595

Proportion of variance explained (%) 58.0 27.4

Plumage coloration and condition in Yellow-billed Cardinals 5
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absolute methanol and stained with Giemsa solution (Sigma Chemical Co.). The remainder of the
blood was stored in 95% ethanol until DNA extraction.

Traditional and molecular methods were used to evaluate infection status by blood para-
sites. Slides were examined by light microscopy (Olympus, Japan). To detect Trypanosoma and
microfilaria, 100 fields were examined at a magnification of 400 ×, and to detect Plasmodium,
Haemoproteus and Leucocytozoon, 200 fields were examined at 1000 ×. The microscopy of each
sample took approximately 25 min, and only slides in good condition (i.e. visually uniform in
consistency, and well stained) and with homogenous distribution of blood cells were analyzed.

DNA from blood samples was extracted using conventional phenol–chloroform extraction
followed by ethanol precipitation. DNA extractions were screened by real time polymerase chain
reaction (PCR) to detect haemosporidian DNA, following the protocol of Bell et al. (2015). Positive
and negative controls were included in all real-time PCR runs. For the positive control, a synthetic
double-stranded DNA product (G-Block- IDT DNA, Coralville, IA) produced from the published
sequence of Plasmodium relictum (accession no. NC012426) was used. All positives determined by
real-time analysis were amplified by nested PCR to amplify a 477-bp region of the cytochrome b
gene (Bell et al. 2015). All nested PCRs were run using OneTaq Master Mix (New England Biolabs,
Ipswich, MA) following the manufacturer’s protocols. Due to the high sensitivity of nested PCR,
negative controls were included in runs to check against possible contamination, although none
was found in any PCR runs.

Products from PCR amplifications were run on 1.25% agarose gels, stained with ethidium
bromide and visualized under UV light. Positive PCR products were purified using ExoSAP-IT
(Affymetrix, Santa Clara, CA) and sequenced using BigDye terminator v. 3.1 cycle sequencing kit
(Applied Bio systems, Foster City, CA) with the internal primers FIFI and R2 (Ishtiaq et al. 2007). DNA
was cleaned up by ethanol precipitation, dried by vacufuge, resuspended with 10 μL of molecular
grade water, and run on an ABI 3700 DNA sequencer (Applied Bio systems, Foster City, CA).

Forward and reverse sequences were visualized, edited and assembled using Sequencher
v. 5.0.1 (Gene Codes Corp., Ann Arbor, MI). Chromatograms that showed the presence of multiple
infections were scored as co-infections. Co-infections were separated using the program PHASE 2.1.1
(Stephens et al. 2001; Stephens & Donnelly 2003) following the protocol of Harrigan et al. (2014).

Assembled sequences for haemosporidians were aligned using BioEdit v. 7.2.0 (Hall 1999).
Aligned sequences were collapsed to unique haplotypes using the FaBox haplotype collapse and
converter tool (Villesen 2007). A local BLAST (Basic Local Alignment Search Tool) against the
MalAvi database (Bensch et al. 2009) using BioEdit v. 7.2.0 (Hall 1999) was conducted for all
unique haplotypes to identify lineages. Haplotypes with 100% pairwise identity to known lineage
sequences were named accordingly, and new lineages with less than 100% pairwise identity were
identified as new lineages.

Leukocyte counts were determined after counting 100 fields at a magnification of 400× in
the same slide used for blood parasite diagnosis. The cells were identified as lymphocytes, hetero-
phils, eosinophils, basophils or monocytes. However, we decided to focus the analysis on the
heterophil to lymphocyte ratio (H/L) because this ratio is traditionally considered to indicate stress
in poultry, with lower values indicating less stressed individuals (Gross & Siegel 1983).
Additionally, variation among individuals regarding leukocyte count was very low (eosinophils,
basophils and monocytes: mean 0.55, 0.20 and 1.68; range 0–3, 0–1 and 0–8, respectively).

Statistical analysis

We used linear models in the program R (v. 2.15.2, R Development Core Team 2012) to test
whether condition parameters were affected by parasitism and if coloration (both carotenoid- and
melanin-based) was associated with condition parameters, age, sex or molting occurrence. Data
were visually inspected to check for distribution, homogeneity of variance, and outliers. Possible
outliers were detected and removed. We used PCs obtained from coloration data as the response
variable and H/L ratio (log-transformed), feather growth rate, body condition index, sex, age (adult
or juvenile), parasitism (yes or no) and molting (yes or no) as explanatory variables. The
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most parsimonious models were obtained by sequentially removing the variables, starting with
interactions. We used likelihood ratio tests (LRT) to evaluate differences in the model fit, prefer-
ring the simpler model whenever no significant difference in model fit was detected. All variables
were initially included, and then dropped until the model contained only significant terms.

RESULTS

We mist-netted and sampled 54 Yellow-billed Cardinals. Molecular analysis
revealed that 18 of them were females and 35 were males. One individual was not
sexed due to problems in blood sampling, and it was removed from the analysis.
Approximately 60% of the individuals were molting and 22% were infected by haemos-
poridian parasites (n = 12). Most individuals were infected by Plasmodium (n = 11), two
of which represented dual infections by two different Plasmodium lineages. Only one
individual was infected by Haemoproteus. However, no parasites were visualized on
blood slides. Parasitized individuals were mainly males (75%; n = 9). Parasitism did not
explain variation in body condition, feather growth rate or H/L ratio (Table 2).

PCcap1 (cap brightness) was not related to any explanatory variables (Table 2). On
the other hand, PCcap2 (cap hue and red chroma) was explained by age (Fig. 3), with
adults presenting higher hue and red chroma, and thus a redder cap. PCcap2 was also
explained by H/L (Fig. 4). Higher hue and red chroma of the cap were associated with
lower H/L, indicating that birds in better body condition presented a redder cap. PCbib1
was also explained by age (Fig. 5); older individuals had lower brightness but higher hue
and UV chroma. The other variables did not significantly explain variation in PCbib1.
Similarly, PCbib2 (bib brightness and UV chroma) was not explained by any explanatory
variables (Table 2).

DISCUSSION

We found evidence of a condition dependency for the carotenoid-based coloration
on the cardinal’s caps. The results suggest that this ornament may have an important
role in honestly signaling individual quality. Physiologically stressed individuals (i.e.
those presenting high values of H/L ratio) exhibited duller cap coloration with inferior

Table 2.

Linear model results from the effects of parasitism on condition parameters (heterophil to lymphocyte
[H/L] ratio, feather growth rate, body condition index) and of condition, sex, age, parasitism and molting

on coloration parameters of Yellow-billed Cardinals (Paroaria capitata).

Estimate (β ± SE) F df P

H/L ratio

Parasitism − 0.07 (0.10) 0.56 1,51 0.45

Feather growth rate

Parasitism 0.00 (0.04) 0.00 1,51 0.92

(Continued )
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Table 2.

(Continued)

Estimate (β ± SE) F df P

Body condition index

Parasitism 0.05 (0.06) 0.72 1,51 0.39

PCcap1

H/L ratio − 0.10 (0.18) 0.32 1,44 0.57

Feather growth rate − 0.82 (1.38) 0.42 1,44 0.51

Body condition index 0.01 (0.01) 0.66 1,44 0.41

Sex a − 0.16 (0.35) 0.32 1,44 0.57

Age b − 0.62 (0.54) 1.54 1,44 0.22

Parasitism − 0.11 (0.40) 0.20 1,44 0.65

Molting 0.24 (0.34) 0.21 1,44 0.64

PCcap2

H/L ratio − 0.59 (0.14) 15.26 1,44 < 0.01

Feather growth rate − 0.88 (1.27) 3.88 1,44 0.07

Body condition index 0.02 (0.01) 2.78 1,44 0.10

Sex a 0.30 (0.32) 0.46 1,44 0.49

Age b − 1.21 (0.47) 7.71 1,44 < 0.01

Parasitism 0.54 (0.36) 1.64 1,44 0.20

Molting 0.16 (0.31) 0.18 1,44 0.66

PCbib1

H/L ratio 0.00 (0.19) 0.00 1,50 0.94

Feather growth rate 1.72 (1.48) 0.05 1,50 0.81

Body condition index − 0.18 (1.20) 0.20 1,50 0.65

Sex a 0.38 (0.38) 1.05 1,50 0.30

Age b − 2.06 (0.42) 20.64 1,50 < 0.01

Parasitism − 0.08 (0.45) 0.46 1,50 0.49

Molting − 0.09 (0.37) 0.00 1,50 0.98

PCbib2

H/L ratio 0.05 (0.13) 0.17 1,50 0.67

Feather growth rate 0.43 (1.03) 0.19 1,50 0.66

Body condition index − 0.55 (0.82) 0.49 1,50 0.48

Sex a 0.23 (0.26) 0.78 1,50 0.37

Age b − 0.34 (0.34) 0.74 1,50 0.39

Parasitism − 0.45 (0.30) 1.79 1,50 0.18

Molting − 0.51 (0.24) 3.48 1,50 0.07

a Estimate is relative to males.
b Estimate is relative to juveniles.
df: degrees of freedom; PC: principal component.
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purity of the color. High levels of H/L ratio have been associated with lower survival in
the field (reviewed in Sepp et al. 2010), besides being traditionally related to chronic
stress (Gross & Siegel 1983; Davis et al. 2008; Krams et al. 2011). In American
Goldfinches [Spinus tristis (Linnaeus 1758)], there was a negative relationship between
hue and H/L ratio, indicating that individuals bearing colorful bills presented low stress
levels (Kelly et al. 2012). This result reinforced the evidence that carotenoid-based
ornaments may signal immunological capacity. Similar results were also found in the

Fig. 3. — Differences in PCcap2 scores (representing hue and red chroma) for carotenoid-based ornament
in relation to age of Yellow-billed Cardinals (Paroaria capitata).

Fig. 4. — Relationship between heterophil/lymphocyte ratio (H/L) and PCcap2 scores (representing hue
and red chroma) of carotenoid-based ornament in Yellow-billed Cardinals (Paroaria capitata).
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Red-legged Partridge (Alectoris rufa Linnaeus 1758), where ornamentation has been
suggested to have evolved through a process of quality assessment between potential
mates (Pérez-Rodríguez & Viñuela 2008).

Distinct ornaments in plumage can predict age in several species (Siefferman
et al. 2005; Krištín et al. 2007). Our analysis of cardinals’ plumage demonstrated that
both carotenoid- and melanin-based ornaments are affected by age independently of
sex. In birds, plumage coloration is assumed to become more elaborate as individuals
get older. For most species, juveniles present plumage ornamentation similar to that of
the adults, although incomplete or duller (Hill & McGraw 2006). This is the case for the
yellow ventral coloration of Great Tits (Parus major Linnaeus 1758), in which older
individuals presented higher values for chroma and hue (del Val et al. 2010). Similarly,
here we showed that older Yellow-billed Cardinals presented redder cap coloration.
Because carotenoids must be obtained from the diet (Olson & Owens 1998), a possible
explanation could be that Yellow-billed Cardinals’ foraging ability for items with a high
density of carotenoids are enhanced with time, as has been found in Great Tits (Heise &
Moore 2003).

Despite being expected to convey less information than carotenoid ornaments,
melanin signals may also reveal quality or condition. Black or brown coloration is
important in the establishment of dominance hierarchies and during mate choice in
black-capped chickadees [Poecile atricapillus (Linnaeus 1766)] and collared flycatchers
[Ficedula albicollis (Temminck 1815)], for example (Mennill et al. 2003; Török et al.
2003). Age-dependency of melanin-based ornaments has also been demonstrated in
several species (Hegyi et al. 2007; Krištín et al. 2007). Here we showed that, similarly
to the red cap, the bib coloration of Yellow-billed Cardinals was affected by age: older
individuals showed darker bibs, higher hues and a greater reflectance in the UV range.
A study of Eastern Bluebirds [Sialia sialis (Linnaeus 1758)] that investigated variation
of the melanin-based ornamentation among age classes also found that older birds were
brighter, and thus less ornamented (Siefferman et al. 2005).

Fig. 5. — Differences in PCbib1 scores (representing brightness, hue and ultraviolet [UV] chroma) for
melanin-based ornament in relation to age of Yellow-billed Cardinals (Paroaria capitata).
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Bib characteristics can work as a “badge of status” in contexts of same-sex
competition and mate choice (Dawkins & Krebs 1978), and in fact are considered
honest signals of quality in several species (Nakagawa et al. 2007; Hoi & Griggio
2008; for the black beard). Although we did not evaluate bib size, bib coloration in
cardinals might convey relevant information about their age. A possible hypothesis to
explain differences in this ornament between age classes relates to physiological and
behavioral changes throughout developmental stages. In House Sparrows (Passer
domesticus Linnaeus 1758), for example, black bib size is affected by circulating tes-
tosterone during molt (Gonzalez et al. 1999). Alternative explanations rely on natural
feather degradation through time, enhanced in adult birds, or on relationships with
survival (e.g. birds with less investment in color survive longer). Nonetheless, age-
dependency signaling allows conspecific identification, especially for more experienced
individuals, and may be important for sexual selection, because it may directly affect
individual fitness (e.g. Greene et al. 2000).

Given that immune responses are costly in resources, one would expect a negative
relationship between carotenoid-based feather ornaments and haemosporidian infec-
tion in a bird population for two reasons: (1) parasites consume resources from the
host, which cannot therefore be allocated to ornament (Møller 1994); (2) individuals
that are forced to fight infections during the formation of carotenoid-based ornaments
have less carotenoid available for deposition into plumage, since activation and main-
tenance of the immune system demands a cost (i.e. energy, protein) and those resources
are limited (Norris & Evans 2000). However, this relationship was not found in Yellow-
billed Cardinals in Pantanal prior to the breeding season. In fact, few studies have
shown empirical evidence of negative associations between male ornamentation and
parasite loads, as well as a female preference for ornamented and parasite-free males
(but see Milinski & Bakker 1990; Møller 1990).

The low parasitemia of malaria parasites found during the non-breeding season
can be explained by the interplay between the reproductive strategy of haemosporidian
parasites and the immune system of hosts. Adult birds should harbor higher parasite
burdens during their reproductive state, when birds are more susceptible to infection
due to the effects of stress and hormones on immune function or due the heavy work-
load of reproduction, such as egg production, parental care, courtship and territory
defense (Sheldon & Verhulst 1996; Zuk & McKean 1996; Saino et al. 2002; Greenman
et al. 2005). Conversely, outside of the breeding season, when this study was carried out,
there is an expected reduction in the abundance of parasites in the peripheral blood-
stream (Valkiūnas 2005). During the initial acute phase of the disease (high parasite-
mia), in which hosts are anemic, are less active and lose their appetite, the parasites
could have an effect on birds’ body condition. If the hosts survive this acute phase, they
will remain infected with low levels of parasites in their blood, only showing relapses of
high parasitemia during the breeding season (Valkiūnas 2005). This is supported by the
inability to identify blood stages in blood films from birds identified by PCR as infected.
Chronically infected Yellow-billed Cardinals seemed unaffected by these detrimental
effects of malaria parasites, and managed to invest in feather grow and coloration as
uninfected individuals did.

In conclusion, our data show the condition-dependency of the carotenoid-based
coloration of the red cap and suggest that this trait may have an important role as an
honest signal during social interactions. However, this still needs to be assessed experi-
mentally. We also revealed the age-dependent effect on both melanin and carotenoid
ornamentation, which could facilitate conspecific recognition based on individual
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experience. Our data do not support the Hamilton and Zuk hypothesis on parasites and
sexual selection since the expression of secondary sexual characters in Yellow-billed
Cardinals is not affected by intensity of blood parasite infection. Although they are
chronically infected with malaria parasites, their body condition, immune response and
feather coloration seem unaffected, and they might reproduce just as well as non-
infected birds. Future studies should seek to understand the role of feather coloration
in intrasexual competition and mate choice, in order to determine how they may
influence reproductive output.
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